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Background

e InAs QD Lasers 1.3 —-1.6 um (and 980-1200nm) well established — even on Silicon

CW InAs QD lasers directly grown on silicon substrates
3.2mm threshold current density of 62.5 A/cm?
RT output power exceeding 105 mW,
Over 3,100 hours of CW operation, giving an extrapolated
mean time to failure of over 100,000 hours.
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Background

e InP-based QDs on GaAs cover 650 to 750 nm, beyond that achievable with compressively
strained GalnP QWs

Early developments: (RT J,;,)
e SSMBE - 2.3 kAcm™ for 2 mm long cavities emitting at 728 nm (Manz Y.M 2000)
e MOVPE —4.25 kAcm™ 200 um long cavities emitting at 645 nm (Walter G. 2004)

¢ InAs QDs around that time ~ 26 Acm2 (Liu G.T. et al 1999)

Progress on growth:
* Previous MOVPE carried out to maximise dot density, T, ~ 580 to 650 ° C

e Increase growth temp ~ 700 ° C reduced dot density but vastly improved the material quality
- 2 mm long lasers emitting at 741 nm 190 Acm at 300 K (Lutti J. et al 2005)

% Further reductions in J,;, made — adjusting core structure and optimising growth temp.

>

Extending to 780nm:

e Reducing the growth rate of the dots - promote the formation of larger dots extending the
range of optical gain to slightly beyond 780 nm. Large number of defects!
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Motivation

{ 254 § 6 7 1 Alexa Fluor 633
Applications A 3 Ao For 660
/ '.I 4 Alexa Fluor 680
e Biological apps: Medical diagnostics/imaging (e.g. < 5 Alexa Fluor 700
excitation of fluorescent dyes), blood analysis, 2 AL 7 Alexa Fluor 790
(=] |
photodynamic therapy §
e Optical read/write CD/DVD compatibility /’f \
e Heterodyning, e.g. Terahertz emission via difference _/// \\\
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Condensed Matter and Photonics




Outline

Structure and optical properties

Controlling emission wavelength

The dot — well active medium

Temperature insensitive wavelength

Exploiting QD properties: Dual-wavelength lasers

Integrated Circuits

Condensed Matter and Photonics



Material Structure

e Epitaxial structure deposited on n-GaAs substrate
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InP QDs form up to three inhomogeneously broadened dot size distributions
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Material Structure

e Epitaxial structure deposited on n-GaAs substrate
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InP QDs form up to three inhomogeneously broadened dot size distributions
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Influencing emission wavelength

Growth temperature (T,): 220 | Modal Absorption
Increase T, 170 1
| 5
» Blue-shifts dot states = \
§ 120f
g
2
> Reduces magnitude of GS 2
absorption o1
» Fewer ‘large dots’ 20 |
675 700 725 750
» Penalty is lower maximum gain Wavelength (nm)
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Influencing emission wavelength

Strain

» Upper confining layer (UCL) of dots
comprises GalnP effective QW

Adjust Ga fraction in UCL:

*Ga % = 51.6, GalnP lattice matched to GaAs —
unstrained

°*Ga % > 51.6 tensile strained

*Ga % < 51.6 compressively strained

¢ Causes deleterious effects on material
quality, no lasing at room temperature.

Alg 52Ing 48P =y p-cladding
(Al 3Gag 7)o 52INg 48P 0.1um core
ﬁ
59x3 Iayers — E
ﬁ
(Alg 3Gag 7)g 52INg 48P I 0.1pm \ core
L,\_ _— B n-cladding
Alg 55N 48P
—  Galn P UCL 0.008 um
5 y 26ML P _aMA
Al gs51ln g4 P LCL 0.016 pm
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Modal absorption / EPVS (cm-1/ arb)
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Measuring state energies
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see “Polarization response of quantum
confined structures using edge-
photovoltage spectroscopy”,
M. Mexis, P. Blood and P.M. Smowton,
Semiconductor Science and Technology
22, pp. 1298-1301 (2007)
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Measured/calculated states (eV)

Well and dot state energies
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Influencing emission wavelength

Strain

*Tensile strain — leads to blue shift
dot transition wavelength

*Shorter lasing wavelength

* Compared 3 Ga compositions

Wavelength (nm)

0.516 (unstrained), 0.54, 0,58

*0.54 Ga fraction produced lasers
with lowest threshold current, e.g.
89 Acm2 at 300 K and 186 Acm
at 350 K (3 mm laser with
uncoated facet)
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Emission Wavelength: InPAs dots

* Emission at longer wavelengths — towards 780nm possible for dots grown at lower temperatures
* penalty of much higher recombination current density (defect density / order-disorder)

See Smowton et al JSTQE 2005

* Alternative — add As to create ternary dots — proof of principle!
,
¥

-
¢

Richard Beanland, Warwick University
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Peak Wavelength/ nm

Wavelength vs Device length
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Laser spectrum
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Modal Absorption Spectrum
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Threshold current density / Acm
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*InPAs lasers work up to 380 K with
260 A/cm?* @ 300 K for 2mm.

*InPAs lasers have higher
temperature dependence of Jth.

Condensed Matter and Photonics



Outline

The dot — well active medium
Temperature insensitive wavelength
Exploiting QD properties: Dual-wavelength lasers

Integrated Circuits

Condensed Matter and Photonics



Spontaneous Emission — where are the carriers

*Emission from dots covers 660 — 750 nm, peaks blue shift with injection

*QW emission peaks at 645 nm, relatively fixed due to large number of states

QW states \ A QD states
0.3} f A Spontaneous Emission
/ | _ ]
| \ ﬁ/1 A
= ( /
= |
g ."
> 02} | /
- /
= [
E ,:
<
2
-
0.1}
/ \‘iu
0 — : : ==
600 650 700 750

Wavelength (nm)
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Optical gain-current relations

*Gain peak wavelength blue-shifts with increased carrier injection due to state-filling.

*Gain saturation of the ground state transition occurs between 20 — 30 cm™ and gain from higher density of
states takes over.

*At 300 K gain values over 45 cm™ measured for current density ~ 3000 Acm™

>0 45 |
—~ = ~
g E P >
% 3 30 |
'gs x 240 K
= 2@ 260 K
< g 15 280 K
300 K
: 320K
0 %’ | | s 340K
690 710 730 0 1000 2000 3000
Wavelength (nm) 37 Aem’?
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Wavelength-Temperature Dependence

Problem: Gain Peak of light emitting semiconductors have temperature sensitive A.

Applications where Gain Peak A stability is important:
e Emission A of Fabry Perot cavities

e ‘Lab on a Chip’, monolithic multilaser devices

e Threshold current of VCSELs and DFB/DBR laser devices

e Laser pump sources

Question: Can we achieve a temperature insensitive A ?

pot Magn  Det WD Exp
»(

e AAinfluenced by temperature coefficient of band gap.

e Inhomogeneously broadened QD ensembles — A strongly dependent on state filling.

Wavelength temperature dependence has been studied in InAs QDs:

J.D. Thomson, H.D. Summers, P.M. Smowton, E. Herrmann, P. Blood, M. Hopkinson, Journal of Applied Physics
90(9) 4859-4861 (2001)

F. Klopf, S. Deubert, J-P. Reithmaier, A. Forchel, Applied Physics Letters, 81(2), 217-219 (2002)
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1) Absorption edge moves
with temperature
dependence of band gap

Net gain / cm

2) Gain peak amplitude is
very temperature
dependent

3) Can we use state filling
to compensate band gap
temperature
dependence?
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Wavelength insensitivity

*Measured change in gain-peak wavelength with
temperature to find temperature-insensitive regime.

*AMN/AT strongly influenced by injection level (or
magnitude of gain).

*At low injection wavelength dependence follows band-
gap temperature coefficient (~ 0.17 nm /K)

*As injection increases the wavelength sensitivity falls to

as low as 0.01 nm/K g
N4
*Minima in temperature sensitivity occurs at a net gain of g
~28 cmt ~
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Temperature insensitive lasing wavelength

Laser design:

Find net-gain (G-a;) at which AMA/AT falls to a
minimum and calculate corresponding laser
cavity length (L) :

(G_ai) =an
1 1

—Inl =
L R

C

For minimum wavelength sensitivity:

0.3<L.<0.5mm

3 mm laser (G-a; = 4 cm™) dependence is
nominally the same as the band-gap.

This is lowered to 0.03 nm/K using a 0.4 mm
long cavity (G-a; = 30 cm™).

Wavelength (nm)

— -— Varshni Equation’ e
730 | . "o
Absorption edge (AE) "0
o Laser cavity = 0.4 mm - -
o Lasercavity=3.0mm _—
720 ¢ v
g )
.~V 8
_— o 2
— z
70 -v  ° =
o =
=)
-l
Wavelenth (nm)
700 ¢
O & =
O - N
o O
230 250 270 290 310 330 350 370 390

Temperature (K)

S. Shutts, P.M. Smowton, A.B. Krysa, Appl. Phys. Lett. 103, 061106 (2013)
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Dual-wavelength Laser

Computer

Applications

e Medical —imaging/diagnostics

Laser speckle contrast imaging (LSI)

Y VYV

2D photo-acoustic imaging

e Optical storage — single chip CD/DVD

e Heterodyning — THz by difference frequency
generation

e [nterferometric measurements
e Probing carrier dynamics of QD ensembles

r

et (O
e ‘f-
3 =
i ’

X

THz - Cherenkov radiation (Karun Vijayraghavan et al,
Nature Communicationsl 2013)
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Wavelength selection

State-filling: Gain Spectra at various injection levels
e Inhomogeneously broadened QD 50 S)
ensembles — A strongly dependent on AN=50nm
state-filling
e Injection level controls the degree of state-
filling 2
e Increasing injection level causes gain-peak 5 /%M“N
A to blue-shift .% W“:‘\\}y
e Level of injection depends on the gain ©)
requirement of the laser % 0 / s
A is influenced by the loss of the laser /
cavity (a,):
G B ' ’
th — & @ Ay = I n RR 650 670 690 710 730 750
C 1" "2
Wavelength (nm)
»Vary the cavity length, L, a,, - mirror loss R, R, = reflectivities

a;= internal optical loss  L.— Cavity Length
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Dual-wavelength laser: Device Architecture

" n Centre DBR Rear DBR
/ “ong Asshort
h ~ . -l - R %
Q -2 e
N JU L
<—
xlong
xshort
15t Cavity
2"d Cavity

Principle of operation:

*Two unequal RWGs separated by DBR
*Common optical axis

*Independent pumping of each section

*Short cavity — high loss utilising high energy dot states

-1

Peak net gain / cm

50

40

30

20

10

AN

670 690 710 73C

Wavelength / nm

*Long cavity utilises low energy dot states

Condensed Matter and Photonics



Device Architecture: Fabrication

Centre DBR

’ “long 51101 t

Rear DBR

[ —

z A

long

A
X A short

Y

v

&
<«

15t Cavity

&
<«

29 Cavity
Deep-etch gratings penetrate to the substrate:
*Provides electrical isolation of two sections
*Allows for asymmetric pumping
*Fewer periods required

*No transverse guiding by grating section

AccV Spot Magn  Det WD Exp F——— 2um
20.0kv 3.0 18456x SE 92 0

v

Grating Fabrication: Developed InP/AlGalnP etch recipe

ICP reactor using Ar/Cl gas chemistry
200/500 W RIE/ICP powers

High temperature (200 ° C) — enhances removal of etch
product InCl,
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Achieving Dual-mode: Principle of operation

Preferential feedback: Spectrally dependent mirror loss

Centre DBR grating:
e High reflectivity at short wavelengths — promotes lasing at short wavelength o (ﬂ) _ 1 In 1
. Low reflectivity at long wavelengths — increases transmission of long m 2 |_C Rf R (ﬂ)
wavelength J
0.75
01— Mirror loss, a
(Gain Requirement)
" 60|
0.50 5
> e
= 3
: S
= .% 50 |
= O
0.25 1%
2
40 |
0 : . . . .
600 650 700 750 800 850 650 660 670 680 690

Wavelength (nm)
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Dual-Mode operation

Device characteristics:
e Single or dual mode operation with up to 63 nm wavelength
separation ?
;
z
63 nm
g . Wavelength (nm)
= 18,8 nm { .
= Time resolved
56 nm
=
D
- 5
o
) . ) o
640 660 680 700 720 a

Wavelength (nm)

S. Shutts, P.M. Smowton, A.B. Krysa, Applied Physics Letters, 104, 241106; (2014) A (arb)
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Wavelength (nm)

Temperature tuning

63 nm wavelength separation @ 300 K:

» Short wavelength: 0.06 nm/K Tune the difference wavelength (0.11
» Long wavelength: 0.17 nm/K nm/K)

730 f ' ' - Laser Cavity Length (mm)
[ )
- 0.2 0.1 0.05 .
oy — %" 0.3 0. ‘ 0.025
°__ - -& —
B Property of QDs
710 ¢

(from gain measurements)

£ 0214
Y
o E @%%
690 | short - N
Iz] +H
long 3
—-— Varshni Equation - “% & i
- Absorption edge (AE) + !
0 %@%
10 20 30 40 >0
o % © °
) . | Net Gain (cm’)
290 310

Temperature (K)
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Operation and Stability of Lasing modes

Varying current to section two (A, .):

Increases light output at long wavelength
Short wavelength output relatively unaffected

Carrier competition not significant to suppress dual-A

emission
A

63 nm wavelength separation @ 300 K Aiong - SQUares

short - Circles

Varying current to section one (A, ,.):

Increases light level of short and long wavelength

Photons generated in section one actively pump section
two

Carriers in section one stimulated to recombine at long
wavelength

7‘| o ‘ xshort Centre DBR Rear DBR
A\ \I\I\I \I\I\I
Section one (S1) Section two (S2)

Fraction change in light output

Fraction change in light output

6 O
‘I A
L | (]
660 680 700 720 ;“Iong
(|
2
) O - O o o - O e _é_o_ o— -o—
O ul (] (wa | (| (] (wa] 0 |
0 15 ] 30 45
S2 drive current
° |
5 | ©
" o
4 | =
| O
3 | o
| O
2
g
1 | - - _ - PE—
a
0 8 ° |
75 100 125

S1 drive current
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Bench top flow cytometry

Cell
SUspension
Sheath . Side scatter
fluid 1 = PMTs
»i‘:'-an_-f"::.e-"l A=632.8nm
Forward
Scatter FD
benchmark hemocytometer: Abbott Cell Dyn Ruby Laser | L
90 (Lobula
=
&
!
—]
z
-4
o |
10° (Complexity)
COMPLEXITY LOBULARITY = Single pass light scatter measurement

= 10,000 cells per sample
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Chip-based flow cytometry

Pros

= portability

" [ow power consumption
= [ow cost (disposability)

= reduced sample volumes

Cons

Typically requires external:
= light sources

= detectors

= fluid pumping equipment

adds cost and limits portability

= Jow throughput < 1000 cells/s

Condensed Matter and Photonics



What are the advantages of a monolithically
integrated Ill-V substrate?

Lasers and detectors can be
defined anywhere in the plane of
the substrate

arrayed lasers/detectors: multiple
measurements per cell

fast switching (ns): re-
configurability and time resolved
measurement

cell is part of the lasing cavity:
multi-pass interrogation

Goal: Integration of capillary fill micro-fluidics and optoelectronics on IlI-V substrate

Condensed Matter and Photonics



Integrated micro-fluidics

3-D micro-channels made using SU-8 photo-epoxy: transparent, chemically stable and
can be patterned into deep, near vertical structures

H
] “
a) unexposed SU-8 b} long wavelength exposure
LY
c) short wavelength exposure d) post development

Channel cross section (wxh) : (50x30) um
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Buried capillary fill micro-fluidics

SU-8 flow cell

» eliminates meniscus
= encourages laminar flow

Condensed Matter and Photonics



Hydrophilic surface treatment

Two stage surface treatment for long term (3 months) hydrophilicity of SU-8 micro-fluidics

004848444

oH  of OH
|
MH MH MH
i1t S
suU-8 Functionised SU-8
0, Plasma Treatment Amine Coating

contact angle measurement

Before: after:

A. Sobiesierski, R. Thomas, P. Buckle.
D. Barrow and P.M. Smowton, “Surface
and Interface Analysis” 47 (13), pp.
1174-1179, 2015
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Capillary fill micro-fluidics

Inlet reservoir Spiral channel outlet

N

—

flow cell |
00000 l

\L \ ——— 0605 12:46:371 350.5
= throughput ~ 200 cells/s

= approximately 6000 cells/ sample
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Integration with a monolithic IllI-V substrate

Fabrication steps:

1. plasma etch 2.5 um deep lasers/detectors
2. Deposit contacts

3. Wet etch 15 um deep trench for fluidics

4. Apply capillary fill micro-fluidics

AccV SpotMagn Det WD Exp 1 20um
20.0 kV 3.0 1055x SE 112 0
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Micro-bead detection results

Micro-beads (1(
travelling ~ 4.3

Laser pulsed @
pulse width 300

4.640 4.645

Time (s)

00000 ‘ 100 FPS
02/ 18 13:26:56 243.3 Yoo LSEC

, AR

N\

U
3.5 4.5 55 6.5 7.5 8.5 9.5

Time (s)
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detector signal (V)

White blood cell measurement

data from a white blood cell preparation of Monocytes and lymphocytes
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25000 "

49.0

49.2

60000
§ 40000
]
A
§ 20000 =
3 “‘\/\*
- I\
0
m . * 49.4975 49.5025 49.5075
‘ 1 time (s)
I 60000
8 e i L j] ! '|‘ whn At _
i’ 40000
©
5
(%)
\ 5§ 20000 N
3 N
\W
49.4 49.6 49.8 50.0
49.801 49.806 49.811
tlme (S) time (s)
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Summary

Progress made on InP QD lasers emitting 650 — 780 nm

Shown that a regime exists where wavelength is insensitive to
operating temperature

Use effect of state-filling and preferential feedback to produce dual-
wavelength emission

Each wavelength operated simultaneously or independently

» Emission from a common aperture
» Temperature dependence — tune wavelength separation

Monolithically integrated microfluidics and optoelectronics

» e.g. Closely spaced laser arrays enable measurement of local velocity at the
point of interrogation and toggling provides position

» With knowledge of velocity and position, size can be found from time based
laser beam transit measurement

o Phyala Schenpes Condensed Matter and Photonics
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