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Background

• InAs QD Lasers 1.3 – 1.6 µm (and 980-1200nm) well established – even on Silicon

S. Chen, W. Li, J. Wu, Qi Jiang, M. Tang, S. Shutts, SN Elliott, A. Sobiesierski, AJ Seeds, I. Ross, PM Smowton, H. Liu,
“Electrically pumped continuous-wave III-V quantum dot lasers on silicon”, Nature Photonics 2016
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CW InAs QD lasers directly grown on silicon substrates 
3.2mm threshold current density of 62.5 A/cm2

RT output power exceeding 105 mW,
Over 3,100 hours of  CW operation, giving an extrapolated 

mean time to failure of over 100,000 hours.
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Background

• InP-based QDs on GaAs cover 650 to 750 nm, beyond that achievable with compressively 
strained GaInP QWs

Early developments: (RT Jth)

• SSMBE - 2.3 kAcm-2 for 2 mm long cavities emitting at 728 nm (Manz Y.M 2000)

• MOVPE – 4.25 kAcm-2  200 µm long cavities emitting at 645 nm (Walter G. 2004)

 InAs QDs around that time ~ 26 Acm-2 (Liu G.T. et al 1999)

Progress on growth:

• Previous MOVPE carried out to maximise dot density, Tg ~ 580 to 650 °C

• Increase growth temp ~ 700 °C reduced dot density but vastly improved the material quality   
- 2 mm long lasers emitting at 741 nm 190 Acm-2 at 300 K (Lutti J. et al 2005)

 Further reductions in Jth made – adjusting core structure and optimising growth temp.

Extending to 780nm:

• Reducing the growth rate of the dots - promote the formation of larger dots extending the 
range of optical gain to slightly beyond 780 nm. Large number of defects!
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Motivation

Applications
• Biological apps: Medical diagnostics/imaging (e.g. 

excitation of fluorescent dyes), blood analysis, 
photodynamic therapy

• Optical read/write CD/DVD compatibility

• Heterodyning, e.g. Terahertz emission via difference 
frequency generation (DFG) 

Advantages of QDs

Inhomogeneously broadened dot sizes:

•Wide distribution of energy states

•Broad gain spectra compared with QWs

•Low surface recombination

•Mode locking

Stable dual-wavelength laser

Reduced wavelength temperature sensitivity [Smowton et al. 2011]
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Material Structure

• Epitaxial structure deposited on n-GaAs substrate

InP QDs form up to three inhomogeneously broadened  dot size distributions
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Material Structure

• Epitaxial structure deposited on n-GaAs substrate

InP QDs form up to three inhomogeneously broadened  dot size distributions
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Richard Beanland, Warwick University
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Influencing emission wavelength

Growth temperature (Tg):

Increase Tg

 Blue-shifts dot states

 Reduces magnitude of  GS 
absorption

 Fewer ‘large dots’

 Penalty is lower maximum gain
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Influencing emission wavelength

Strain

• Upper confining layer (UCL) of dots 
comprises GaInP effective QW

Adjust Ga fraction in UCL:

•Ga % = 51.6, GaInP lattice matched to GaAs –
unstrained

•Ga % > 51.6 tensile strained

•Ga % < 51.6 compressively strained

Causes deleterious effects on material 
quality, no lasing at room temperature.
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Measuring state energies

+V

see “Polarization response of quantum 
confined structures using edge-

photovoltage spectroscopy”, 
M. Mexis, P. Blood and P.M. Smowton, 
Semiconductor Science and Technology 

22, pp. 1298-1301 (2007) 
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Influencing emission wavelength
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•Tensile strain – leads to blue shift 
dot transition wavelength

•Shorter lasing wavelength

• Compared 3 Ga compositions

0.516 (unstrained), 0.54, 0,58

•0.54 Ga fraction produced lasers 
with lowest threshold current, e.g. 
89 Acm-2 at 300 K and 186 Acm-2

at 350 K (3 mm laser with 
uncoated facet)
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Emission Wavelength: InPAs dots

• Emission at longer wavelengths – towards 780nm possible for dots grown at lower temperatures 

• penalty of much higher recombination current density (defect density  /  order-disorder)

See Smowton et al JSTQE 2005

• Alternative – add As to create ternary dots – proof of principle!

Richard Beanland, Warwick University
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Samples Structure 

TEM ( InP)

TEM ( InPAs)
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Threshold current density vs Temperature     

L= ( 1,2,3,4,mm)

W = 50 µm

Oxide isolated stripe 
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Spontaneous Emission – where are the carriers

•Emission from dots covers 660 – 750 nm, peaks blue shift with injection

•QW emission peaks at 645 nm, relatively fixed due to large number of states
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•Gain peak wavelength blue-shifts with increased carrier injection due to state-filling.

•Gain saturation of the ground state transition occurs between 20 – 30 cm-1 and gain from higher density of 
states takes over. 

•At 300 K gain values over 45 cm-1 measured for current density ~ 3000 Acm-2
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Wavelength-Temperature Dependence

Applications where Gain Peak λ stability is important:

• Emission λ of Fabry Perot cavities

• ‘Lab on a Chip’, monolithic multilaser devices

• Threshold current of VCSELs and DFB/DBR laser devices

• Laser pump sources

Problem: Gain Peak of light emitting semiconductors have temperature sensitive λ.

• ∆λ influenced by temperature coefficient of  band gap.

• Inhomogeneously broadened QD ensembles – λ strongly dependent on  state filling.

Wavelength temperature dependence has been studied in InAs QDs:

Question: Can we achieve a temperature insensitive  λ ?

J.D. Thomson, H.D. Summers, P.M. Smowton, E. Herrmann, P. Blood, M. Hopkinson, Journal of Applied Physics 
90(9) 4859-4861 (2001)

F. Klopf, S. Deubert, J-P. Reithmaier, A. Forchel, Applied Physics Letters, 81(2), 217-219 (2002)
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Wavelength insensitivity
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•Measured change in gain-peak wavelength with 
temperature to find temperature-insensitive regime.

•Δλ/ΔT strongly influenced by injection level (or 
magnitude of gain).

•At low injection wavelength  dependence follows band-
gap  temperature coefficient (~ 0.17 nm /K)

•As injection increases  the  wavelength sensitivity falls to 
as low as 0.01 nm/K

•Minima in temperature sensitivity occurs at  a net gain of 
~ 28 cm-1
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Temperature insensitive lasing wavelength

Laser design:

Find net-gain (G-αi) at which  Δλ/ΔT falls to a 
minimum and calculate corresponding  laser 
cavity length (Lc) :

For minimum wavelength sensitivity:

3 mm laser (G-αi = 4 cm-1) dependence is 
nominally the same as the band-gap. 

This is lowered to 0.03 nm/K using a 0.4 mm 
long cavity (G-αi = 30 cm-1).
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Dual-wavelength Laser

Applications

• Medical – imaging/diagnostics
 Laser speckle contrast imaging (LSI)

 2D photo-acoustic imaging

• Optical storage – single chip CD/DVD

• Heterodyning – THz by difference frequency 
generation

• Interferometric measurements

• Probing carrier dynamics of QD ensembles 

THz - Cherenkov radiation (Karun Vijayraghavan et al, 
Nature Communicationsl 2013)

LSI (Qin J. et al Biomedical Optics Express, 2012
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Wavelength selection

State-filling:

• Inhomogeneously broadened QD 
ensembles – λ strongly dependent on 
state-filling

• Injection level controls the degree of state-
filling

• Increasing injection level causes gain-peak 
λ to blue-shift

• Level of injection depends on the gain 
requirement of the laser
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λ is influenced by the loss of the laser 
cavity (αm):

am - mirror loss                    R1,R2 = reflectivities

ai = internal optical loss Lc – Cavity  Length

Vary the cavity length, Lc
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Dual-wavelength laser: Device Architecture
Z

X

Y

Principle of operation:

•Two unequal RWGs separated by DBR

•Common optical axis

•Independent pumping of each section

•Short cavity – high loss utilising high energy dot states

•Long cavity utilises low energy dot states
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λshort

λlong

1st Cavity

2nd Cavity

Device Architecture: Fabrication

Z
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Y

Deep-etch gratings penetrate to the substrate:

•Provides electrical isolation of two sections

•Allows for asymmetric pumping

•Fewer periods required

•No transverse guiding by grating section

Grating Fabrication: Developed InP/AlGaInP etch recipe

• ICP reactor using Ar/Cl gas chemistry

• 200/500 W RIE/ICP powers

• High temperature (200 °C) – enhances removal of etch 
product InCl3

2.7 µm
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Achieving Dual-mode: Principle of operation

Preferential feedback: Spectrally dependent mirror loss
Centre DBR grating: 

• High reflectivity at short wavelengths – promotes lasing at short wavelength

• Low reflectivity at long wavelengths – increases transmission of long 
wavelength
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Dual-Mode operation
Device characteristics:

• Single or dual mode operation with up to 63 nm wavelength 
separation
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Temperature tuning

63 nm wavelength separation @ 300 K:

 Short wavelength: 0.06 nm/K

 Long wavelength: 0.17 nm/K
Tune the difference wavelength (0.11 

nm/K)
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Operation and Stability of Lasing modes

Varying current to section two (λlong):

• Increases light output at long wavelength

• Short wavelength output relatively unaffected

• Carrier competition not significant to suppress dual-λ
emission
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Varying current to section one (λshort):

• Increases light level of short and long wavelength

• Photons generated in section one actively pump section 
two

• Carriers in section one stimulated to recombine at long 
wavelength
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benchmark hemocytometer: Abbott Cell Dyn Ruby

Bench top flow cytometry

 Single pass light scatter measurement

 10,000 cells per sample

λ = 632.8nm
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Pros

 portability 

 low power consumption

 low cost (disposability) 

 reduced sample volumes

Chip-based flow cytometry 

Cons

Typically requires external:

 light sources

 detectors

 fluid pumping equipment

adds cost and limits portability

 low throughput < 1000 cells/s
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What are the advantages of a monolithically 
integrated III-V substrate?

 Lasers and detectors can be 
defined anywhere in the plane of 
the substrate

 arrayed lasers/detectors: multiple 
measurements per cell

 fast switching (ns): re-
configurability and time resolved 
measurement

 cell is part of the lasing cavity: 
multi-pass interrogation  

Goal: Integration of capillary fill micro-fluidics and optoelectronics on III-V substrate
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Integrated micro-fluidics

3-D micro-channels made using SU-8 photo-epoxy: transparent, chemically stable and

can be patterned into deep, near vertical structures

Channel cross section (wxh) :  (50x30) μm 
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Buried capillary fill micro-fluidics

 eliminates meniscus 

 encourages laminar flow

SU-8 flow cell
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Hydrophilic surface treatment

Two stage surface treatment for long term (3 months) hydrophilicity of SU-8 micro-fluidics

contact angle measurement


γsv

γlv

γsl

Before: after:

A. Sobiesierski, R. Thomas, P. Buckle. 

D. Barrow and P.M. Smowton, “Surface  

and Interface Analysis” 47 (13) , pp. 

1174-1179, 2015
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Capillary fill micro-fluidics

flow cell

Inlet reservoir Spiral channel outlet

 throughput ~ 200 cells/s  

 approximately 6000 cells/ sample
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Integration with a monolithic III-V substrate

Fabrication steps:

1. plasma etch 2.5 μm deep lasers/detectors

2. Deposit contacts

3. Wet etch 15 μm deep trench for fluidics

4. Apply capillary fill micro-fluidics



Condensed Matter and Photonics

Micro-bead detection results
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Micro-beads (10μm) 
travelling  ~ 4.3 mm/s

Laser pulsed @10 KHz, 
pulse width 300 ns
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data from a white blood cell preparation of Monocytes and lymphocytes

White blood cell measurement  
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Summary
• Progress made on InP QD lasers emitting 650 – 780 nm

• Shown that a regime exists where wavelength is insensitive to 
operating temperature

• Use effect of state-filling and preferential feedback to produce dual-
wavelength emission

• Each wavelength operated simultaneously or independently

 Emission from a common aperture

 Temperature dependence – tune wavelength separation

• Monolithically integrated microfluidics and optoelectronics
 e.g. Closely spaced laser arrays enable measurement of local velocity at the 

point of interrogation and toggling provides position

 With knowledge of velocity and position, size can be found from time based 
laser beam transit measurement
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